N ov 2 00 7 The classification of Z − graded modules of the intermediate series over the q - analog Virasoro - like algebra ∗ ∗

نویسنده

  • Weiqiang Lin
چکیده

In this paper, we complete the classification of the Z-graded modules of the intermediate series over the q-analog Virasoro-like algebra L. We first construct four classes of irreducible Z-graded L-modules of the intermediate series. Then we prove that any Z-graded L-modules of the intermediate series must be the direct sum of some trivial L-modules or one of the modules constructed by us.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 2 . 01 44 v 1 [ m at h . R T ] 2 D ec 2 00 7 Graded modules for Virasoro - like algebra ∗

In this paper, we consider the classification of irreducible Zand Z2-graded modules with finite dimensional homogeneous subspaces over the Virasoro-like algebra. We first prove that such a module is a uniformly bounded module or a generalized highest weight module. Then we determine all generalized highest weight irreducible modules. As a consequence, we also determine all the modules with nonz...

متن کامل

0 N ov 2 00 6 Classification of Z 2 - graded modules of the intermediate series over a Lie algebra of Block type

Let L be the Lie algebra of Block type over a field F of characteristic zero, defined with basis {Li,j | i, j ∈ Z} and relations [Li,j, Lk,l] = ((j + 1)k − (l + 1)i)Li+k,j+l. Then L is Z -graded. In this paper, Z -graded L-modules of the intermediate series are classified.

متن کامل

Lie triple derivation algebra of Virasoro-like algebra

Let $mathfrak{L}$ be the Virasoro-like algebra and $mathfrak{g}$ itsderived algebra, respectively. We investigate the structure of the Lie triplederivation algebra of $mathfrak{L}$ and $mathfrak{g}$. We provethat they are both isomorphic to $mathfrak{L}$, which provides twoexamples of invariance under triple derivation.

متن کامل

Representations for the Non-graded Virasoro-like Algebra

It is proved in this paper that an irreducible module over the non-graded Virasoro-like algebra L, which satisfies a natural condition, is a GHW module or uniformly bounded. Furthermore, we give the complete classification of indecomposable L-modules V = ⊕ m,n∈Z Cvm,n which satisfy Lr,svm,n ⊆ Cvr+m,s+n+1 + Cvr+m,s+n.

متن کامل

0 Ju l 2 00 5 Classification of simple weight Virasoro modules with a finite - dimensional weight space

We show that the support of a simple weight module over the Virasoro algebra, which has an infinite-dimensional weight space, coincides with the weight lattice and that all non-trivial weight spaces of such module are infinite dimensional. As a corollary we obtain that every simple weight module over the Virasoro algebra, having a nontrivial finite-dimensional weight space, is a Harish-Chandra ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008